
Protocol Synthesis for Real-Time Applications*
A. Khoumsi

Université de Sherbrooke, Département de génie électrique et de génie informatique
Sherbrooke(Quebec) Canada J1K 2R1 email : khoumsi@gel.usherb.ca

Gregor v. Bochmann
University of Ottawa, School of ITO, Ottawa, (Quebec), H3C 3J7

Rachida Dssouli
Université de Montréal, Département IRO, Montréal, (Quebec), H3C 3J7

February, 1999

ABSTRACT.

This paper deals with automatically deriving protocol specifications which provide a given service
satisfying timing requirements. In previous work, we have developed an extension of a method proposed
by Saleh and Probert, by considering timing requirements in a more general case than in other existing
studies. In the present paper, we improve our method by the following modifications and additions. First,
the number of messages exchanged between the protocol entities is minimized. Second, a less restrictive
strategy for choosing between several possible service primitives is proposed, which allows that certain
decisions are distributed among several sites. Third, we consider applications where the choice between
several primitives of a single site can be made by the user, and not only by the system. Fourth, conditions
of existence of solutions are weaker. Fifth the timing constraints of the synthesized protocols are weaker.
Finally, two simple but concrete examples of applications are described.

KEYWORDS. Real-Time Protocol, Service, Synthesis, Dense Time, Assembly System, X.25 Protocol.

1. Introduction
Several methods for deriving a protocol specification from the specification of a desired service have
been developed by various researchers [4,7,8,10-12,19,21]. These methods are not applicable for real-time
applications, for which the correct ordering of service primitives alone does not always ensure the
success of a task. In addition, certain delays must be respected between occurrences of services
primitives. Timing constraints are dealt with in [10,11], but with restrictions. In fact, in [11] transit delays
in the medium are supposed negligible, while in [12] they re bounded by a maximum value. In the present
paper, our aim is to describe a systematic approach for deriving protocols which guarantee both : (a) a
correct ordering for the execution of service primitives; and (b) the satisfaction of given timing
requirements between the executions of service primitives, in a more general case than in [11,12].

An approach presented in [19], which guarantees only (a), has been previously extended in [13] for
ensuring also (b). The timing requirements considered in [13] allow to specify certain constraints on the
delays between consecutive service primitives. For instance, we can specify that the delay between a data
transmission and its reception must be in an interval [tmin, tmax]. In the present paper, we consider the
same problem but we provide a better solution. In fact, compared to [13] : (a) the number of messages
exchanged between protocol entities for providing a desired service has been minimized; (b) the strategy
for choosing between several possible service primitives is distributed among several sites, instead of
being centralized in a single site; (c) we consider applications where the choice between several
primitives of a single site can be made by the user, and not only by the system; (d) conditions of
existence of solutions are weaker; (e) the temporal constraints to be respected by the protocol entities are
weaker. We have also presented two concrete examples of application.

The remaining of this paper is organized as follows. In Sect. 2, we introduce the problem of protocol
derivation and the principle used for deriving protocols. Sect. 3 deals with non-real-time systems. First,
we show how services and protocols are specified, and then we introduce the method for deriving
protocols. Sect. 4 to 6 deal with real-time systems. In Sect. 4, we describe how services and protocols are
specified using timed automata. In Sect. 5, we explain the approach used for calculating temporal
requirements for protocol entities from temporal requirements of a service to be provided. We also
present some rules for deriving real-time protocols in a systematic way. In Sect. 6, three examples (one
abstract and two concrete) illustrate our method. Finally, we conclude in Sect. 7.

2. Protocol synthesis
We consider a distributed system, denoted DS, consisting of several sites interconnected through a
reliable communication medium, simply called medium. We assume that:

- Each pair of sites can communicate with each other through the medium;
- The environment can interact with the DS at the different sites through service access points (SAP).
These interactions correspond to the executions of service primitives (simply called primitives).

We may assume that to each site, identified by a number i and denoted Sitei, correspond a protocol
entity, denoted PEi. Intuitively, PEi represents the local behaviour of the DS in Sitei.

In the user's viewpoint, the DS is a black box which provides a service where only executions of
primitives are visible. We assume that the specification of the desired service (provided to the user)
defines: (a) the ordering of the occurrences of primitives; (b) the timing requirements between the
occurrences of primitives. The timing requirements define the real-time properties of the DS, i.e., the
success of a task depends on the respect of certain delays.

The aim of the designer is then to derive specifications of the local protocol entities PEi, for i=1,2, ...,
n, from the specification of the desired service. In the case of a real-time system, the designer must also
have a temporal model of the medium, which is assumed reliable. Intuitively, for generating protocol
specifications, the designer must know: (i) what the user wants (the service specification), and (ii)
bounds on the transit delays of messages in the medium (temporal model of the medium). The problem
of protocol derivation is then: How can we derive systematically specifications of the local protocol
entities (protocol specifications) which provide a given desired service ?

Reliable medium
 SERVICE
SPECIFICATION

a1 a2 an

 Protocol
 Entity 1

a1

 Protocol
 Entity 2

a2

 Protocol
 Entity n

an

Fig. 1. Service and protocol concepts

The approach we have selected for deriving protocols is called Synthesis, and the systems considered are
assumed sequential, i.e., if two events are consecutive then there is a causality relation between them.
The basic principle we have used is the following: if in the specification of the desired service, a
primitive A is executed by PEa, and is followed by the execution of a primitive B by PEb, then: (α) after

PEa executes A, it sends a message m to entity PEb; (β) after PEb receives message m, it executes B. We
will see in the following sections how this principle is used for developing algorithms for synthesizing
protocols. We note the terms "derivation" and "synthesis" are used as synonyms.

3. Protocol Synthesis for Non-Real-Time Applications
3.1. Service Specification
A service desired by the user is described by a finite state automaton (FSA), denoted SS, which specifies
the sequences of service primitives the user would like to observe at the various SAPs. Every transition of
SS (Fig. 2) is defined by [q,Ea,r], where: (1) q and r are origin and destination states; and (2) Ea
represents a primitive E executed by PEa. Besides, every transition is identified by a number p and then
denoted Tp=[q,Ea,r]. Henceforth, in a figure representing an FSA, any transition Tp=[q,Ea,r] is simply
denoted Ea, since q and r are explicitly represented by the transition diagram.
Definition 3.1. (Incoming and outgoing transitions).
An outgoing (resp. incoming) transition of a state q is a transition which is executable from (resp. leads
to) q.

T1

1

2

3 4

T = [1,A ,2] 1 1 T = [2,B ,3] 2 3 T = [3,C ,2] 3 2

T = [3,B ,1] 4 4 T = [2,B ,4] 5 1 T = [4,C ,2] 6 4
T6

T3

T4

T2
T5

Fig. 2. Service specification

3.2. Protocol specification
A protocol entity PEa is described by an FSA, denoted PSa (see for example Fig. 5), which specifies the
sequences of local events which occur at Sitea. There are three types of events in each PSa.

Type P (for Primitive) : The execution of a service primitive E is denoted Ea.
Type S (for Send): The sending of a message is denoted sa

i (p), and means "message parameterized by p
(i.e., with content p) is sent by PEa to entity PEi ".

 Type R (for Receive): The reception of a message is denoted rai (p), and means "message parameterized
by p and coming from PEi is received by PEa".

To clarify our syntax, we note that in SS and in any PSa, every index specifies the site where the event is
executed, and every exponent specifies the destination site for events of Type S and the sender site for
events of Type R.

3.3. Correctness of a protocol
Let PE1, PE2,..., PEn be n protocol entities, specified by PS1, PS2,..., PSn respectively. Let DS be
constituted by PE1, PE2,..., PEn and by the medium, and specified by DS.
Definition 3.2. (Combined behaviour of several protocol entities)
The combined behaviour of PE1, PE2 , ..., PEn is the behaviour of DS. Intuitively, the specification of
this behaviour, denoted DS, can be computed from PS1, PS2,..., PSn by making a shuffled product of
PS1, PS2, ..., PSn, with the following constraint: in DS, the first event which follows sa

b(p) is rb
a(p), and

reciprocally, the last event which precedes rb
a(p) is sa

b(p), for any a, b, p. We define this combined
behaviour by the operator Comb : DS=Comb(PS1, PS2 , ..., PSn).
Definition 3.3. (Projection, total and partial provision of a desired service)
Let Vs and Vi be the alphabets of the service and PSi, respectively. We also use the following concepts :
 • ProjΛ(A) denotes the projection of an FSA A into an alphabet Λ. As an example, ProjVs(DS) specifies

the service provided to the user by DS.

 • A ≅ B means that the FSAs A and B accept the same language (trace equivalence).
 • A < B means that the language accepted by A is included in the one accepted by B.
We say that the service is totally (resp. partially) provided if ProjVs(DS) ≅ SS (resp. ProjVs(DS) < SS).

Definition 3.4. (Semantic and syntactic correctness)
We say that the protocol is semantically correct if the desired service is totally provided. The protocol is
syntactically correct if DS is deadlock-free and livelock-free and no unspecified reception error is
possible (we assume that the desired service SS is deadlock-free and livelock-free).
Our aim is therefore to propose a synthesis method which, from the specification of a desired service,
generates specifications of protocol entities which are syntactically and semantically correct.

3.4. Principle for deriving protocol entities
From an SS specifying a desired service, deriving a protocol consists of generating as many FSAs as
there are sites. Each of these FSAs is denoted PSi and specifies the action sequences executed at Sitei. In
order to provide the desired service, the different PEs exchange messages through a reliable medium. The
basic principle used for deriving a protocol is explained in the last paragraph of Sect. 2. This principle
has been applied in [13] as follows. If the execution of a primitive A by PEa is followed by a choice
between primitives executed by other PEbis, for i=1, ...,k, (Fig. 3) then, after the execution of A, PEa

decides which transition should follow. It therefore sends a message m to all PEbis (i=1, ...,k, and bi≠a)
which contains the following two parameters: (1) the identifier p of the executed transition Tp; (2) the
identifier q of the chosen transition Tq to be executed next. All PEbis will receive the message m, but
only one of them will execute the primitive corresponding to the selected transition Tq. The other PEs
ignore the message. In the particular case where A is followed by a choice of primitives executed by the
same protocol entity PEb, the choice can be made by PEa or PEb, depending on the application.

qT =Ap a
}

}

PEb1

PEbk

Fig. 3. Choice between several actions
 This principle implies that the following three restrictions must be satisfied.
Restriction 1. The transitions which may occur in the initial state of SS are all executable by a single

protocol entity.
Restriction 1 is necessary because the choice between several primitives executed at different sites is
made by the PE which has just executed a primitive. With this approach, the choice cannot be made in
the initial state, since no primitive has been executed.

Restriction 2. The choice between several primitives is made by the system and not by the user.
In other terms, when there is a choice between several primitives, the latter must be outputs.

Restriction 3. The choice between primitives executed by a given PEbi is made by PEa.
Restriction 3 implies that the choice between several primitives executed by a given PEbi may not
depend on some processing executed by PEbi, after the reception of message m from PEa.

Compared to [13,19], the following three improvements are made in the subsections below:
 (a) Restriction 2 is weakened as follows: the choice between PEbis is made at Sitea by the system, but

the choice between several primitives of the selected PEbi may be made at the selected site by the
system (for upward primitives) or by the user (for downward primitives).

 (b) Restriction 3 is removed as follows: PEa is not necessarily required to select the following primitive;
 it may decide to select only the following protocol entity which, in turn, selects one of its primitives.
 (c) PEa sends a message only to the selected protocol entity.

3.6. Derivation procedure
SS being the input of the problem, the derivation procedure consists of the following two steps.
Step 1 : This step consists of completing SS by the insertion of a message exchange between each pair of
consecutive primitives which are executed in different sites. In order to avoid any ambiguity, every
message contains the identifier of the state which is reached in SS after the execution of the first of the
two primitives. This tranformation implements the relation of causality between consecutive primitives.

A1

s (1)3
1

r (4)4
1

r (1)1
3

s (2)2
3

s (2)4
3

r (2)3
4

s (4)1
4

r (3)2
1

r (6)4
1

s (5)4
1

s (3)1
2

s (3)3
2r (2)3

2

r (6)4
3

r (3)2
3

s (6)3
4

s (6)1
4

r (5)1
4

1

4

12
14

15

16

B1

C4
C2

B3

B4

2 10

11

13

3

2120

1918

17

5

7

8

9

6

B1

Fig. 4. GPS obtained in Step 2 for the example represented in Fig. 2.

Step 2 : From GPS, we compute the specification PSi of each PEi which must be implemented in Sitei as
follows. Each PSi is obtained by projecting GPS into the alphabet of events which occur in Sitei. Then,
the PSi obtained are minimized and determinized.

We note that this two-step procedure is simpler than the procedures proposed in [13,19], besides being
more optimal. The simplicity comes from the fact that, contrary to [13,19], each of the two steps of the
procedure is intuitively understandable and justified. Procedures in [13,19] consists of a set of abstract
transformations most of which are not intuitively explained.

For our example of Fig. 2, we obtain the specifications of Figures 4 and 5, after the first and second
steps, respectively. To make the projections of GPS (Fig. 4) for obtaining PSi (i=1 to 4) (Fig. 5) more
directly visible, the states of PSi are named according to their corresponding states in GPS, where "i-j"
means all integers from i to j.

r (4)4
1

B1

r (3)2
1 r (3)2

1 r (6)4
1

s (1)3
1

r (4)4
1

s (5)4
1

A1

B1

1

15 10

2

 3-9
17-21

 4,5,21
 11-14
 16-19

r (2)3
2

s (3)1
2

C2
s (3)3
2

19

18

 1-17
 20,21

5

r (6)4
3r (1)1

3
r (6)4

3

B3
s (2)2
3

s (2)4
3r (3)2

3
4 10-21

 1-3
 6-9

s (6)3
4

B4 C4
r (5)1
4

r (5)1
4

r (5)1
4r (2)3

4

r (2)3
4

s (4)1
4

s (6)1
4

7

8

12

13

10,11,
14,15

 4,6.10,11,
 15-21

 1-6
 9-11

 5.a. PS1 5.b. PS2 5.c. PS3 5.d. PS4
Fig. 5. Obtained protocol specifications

For lack of space, syntactic and semantic correctness of the protocol synthesized in not presented.

Contrary to [19,20], the rules for deriving protocol entities do not depend on whether primitives are
upward or downward. In our opinion, such a distinction complicates uselessly the rules of Step 1. In fact,
we must keep in mind that the aim of the messages generated is to guarantee the order of primitives
implied by the service specification, independently whether they are upward or downward. Recall that
the actors of choices are implicitly specified by the three improvements of Sect. 3.4. In the remaining
part of this paper, we extend the procedure of protocol derivation to real-time distributed systems.

4. Timed automata for specifying services and correct protocols with temporal requirements
Two approaches have been used to model time: Discrete-time models which use the domain N of
integers to model the time [3,17,18], and Dense-time models which use a dense domain to model the time
[1,2,5,13,14,16]. In this study, we have used a dense-time model where the time is viewed as a state
variable that ranges over a dense domain and evolves indefinitely.

4.1. Timed automata (TA)

The timed automata (TA) model we propose here uses a variable vvvv and a clock cccc. TAs are inspired from
the model presented in [1]. Here are a few definitions which are necessary for a formal definition of a TA.

Definition 4.1. (Clock cccc, variable vvvv)
cccc has a positive real value which : (1) is set to zero at the occurrence of every transition; and (2) is equal
to the time elapsed since the last instant it was set to zero.
vvvv has a strictly positive natural value which can be updated at the occurrence of any transition.

Let A=(Q,Σ,δ,q0) be an FSA where Q is a set of states, Σ is an alphabet, q0 is the initial state, and

δ⊆Q×Σ×Q defines the transitions. Let us see how a TA can be defined from the FSA A.

Definition 4.2. (Timed transition, and Timed automaton)
Let I=[a;b] be an interval, where a and b are positive real numbers and a≥b.

A timed transition is defined by [q,σ,r;C, v] where : (a) [q,σ,r] defines a transition of the FSA A;
(b) C=(I1, I2,...,Im) is a m-tuple of non-empty intervals, where m is a strictly positive natural number; (c)
v is a value of variable vvvv.

A TA At can therefore be constructed if we transform every transition tr=[q1,σ,q2] of A into a timed
transition Tr by associating to it an m-tuple C of intervals and a value v of vvvv. The semantics of a timed

transition Tr=[q,σ,r;C, v] of At depends on the current state q and on the current values of vvvv and cccc as
follows. If u is the current value of vvvv then : (1) Tr is enabled (i.e., may occur) only if the current value of
cccc falls within the uth interval Iu of C ; and (2) after the occurrence of Tr, vvvv is set to v and cccc is set to zero.
Intuitively, the temporal constraint of a transition may depend on how the current state has been reached
(this information is given by vvvv).

Henceforth, every timed transition is simply called transition, and Tr=[q,σ,r;C, v] may be simply

represented by Tr=[σ;C, v] if there is no ambiguity about q and r. An example of a part of TA is given in
Fig. 6. State q has two incoming (Tr1 and Tr2) and two outgoing transitions (Tr3 and Tr4), with
Tr1=[q1,σ1,q;C1,v1], Tr2=[q2,σ2,q;C2,v2], Tr3=[q,σ3,r1;C3 ,v3], and Tr4=[q,σ4,r2;C4 ,v4]. With the
representation of Fig. 6, we can define v1 and v2, and C3 and C4. In fact, for a timed transition

Tr=[q,σ1,r;C,v], the definition of v necessitates to know all the incoming transitions of r, and the
definition of C necessitates to know all the incoming transitions of q. For example, v1=1, v2=2,
C3=(I31,I32), C4=(I41,I42), I31=[1;2], I32=[0;2], I41=[1;3] and I42=[2;5]. The informal specification is then
the following, with q being the current state:
- if vvvv=1, i.e., q has been reached by transition Tr1, then :
 * Tr3 (resp. Tr4) may occur after a delay within the interval I31=[1;2] (resp. I41=[1;3]);
 * If neither Tr3 nor Tr4 occurs after a delay within [1;2], then Tr4 must occur after a delay within [2;3]

(in order to avoid a deadlock).
- if vvvv=2, i.e., q has been reached by the transition Tr 2, then :
 * Tr3 (resp. Tr4) may occur after a delay within the interval I32=[0;2] (resp. I42=[2;5]);

 * If Tr3 does not occur after a delay within [0;2], then Tr4 must occur after a delay within [2;5].

q
Tr1q1

q2

r1

r2Tr2

Tr3

Tr4

Fig. 6. Incoming and outgoing transitions

Our TA model can be transformed into the model presented in [1] as follows. Instead of using variable vvvv
which informs when necessary about how the current state q has been reached, we may define another
state space in which the states are pairs (q, R), where q represents the current state and R a subset of the
previous states. In this case, every enabling condition C becomes a single interval, but each state q is
splitted into k states (q,Ri), for i=1,...,k, such that the original transitions (in our TA model) from the
states of Ri to q set vvvv to the same value i.

4.2. Service and protocol Specifications
A desired service is described by a TA denoted SST, which specifies: (a) the required sequences of
primitives; and (b) certain temporal requirements between consecutive primitives. In any state q of SST,
we can express some temporal constraints on the primitives which are executable from state q. These
temporal constraints may depend on how q has been reached. As an example, the FSA SS of Fig. 2 (Sect.
3.1) is transformed into a TA SST by replacing transitions Ti of SS into the following timed transitions
Tri, i=1,...,6, respectively : Tr1=[1,A1,2;C1,1], Tr2=[2,B3,3;C2,1], Tr3=[3,C2,2;C3,2], Tr4=[3,B4,1;C4,1],
Tr5=[2,B1,4;C5,1], Tr6=[4,C4,2; C6,3], and C1=I1, C2=(I21,I22,I23), C3=I3, C4=I4, C5=(I51,I52,I53), C6=I6,
where I1, I21, I22, I23, I3, I4, I51, I52, I53, and I6 are intervals. For example, if the current state 2 is reached
by Tr3, then vvvv is set to 2, Tr2 is enabled if and only if (cccc∈I22), and Tr5 is enabled if and only if

(cccc∈I52) (intervals I22 and I52 of C2 and C5 are used because vvvv=2). Therefore, if we denote the sentence

"the delay of Tra and Trb falls within the interval I" by " I ← 〈Tra,Trb〉" then :

 I1 ← 〈Tr4,Tr1〉 I21 ← 〈Tr1,Tr2〉 I22 ← 〈Tr3,Tr2〉 I23 ← 〈Tr6,Tr2〉 I3 ← 〈Tr2,Tr3〉
 I4 ← 〈Tr2,Tr4〉 I51 ← 〈Tr1,Tr5〉 I52 ← 〈Tr3,Tr5〉 I53 ← 〈Tr6,Tr5〉 I6 ← 〈Tr5,Tr6〉

A PEa is described by a TA denoted PSTa, which specifies: (a) the sequences of local events which
occur at Sitea; (b) certain temporal constraints to be satisfied between consecutive events. Similarly to
the non-real-time case, the events may be of the three types P, S and R (see Sect. 3.2). Examples of TAs
specifying protocol entities will be given in Sect. 6.

4.3. Correctness of a protocol
We consider PE1, PE2 , ...,PEn which are specified by PST1, PST2, ..., PSTn, respectively. Let DS be the
distributed system constituted by PE1, PE2,...,PEn and by the medium, and specified by a TA DST.

Definition 4.3. (Timed sequence of events, Timed language, Acceptance)
A timed sequence T is represented by 〈σ1,t1〉〈σ2,t2〉...〈σi,ti〉... and means that events σ1, σ2, ..., σi, ...
occur at instants t1, t2, ..., ti ..., respectively, where t1<t2< ...<ti<... and each ti is a positive real value.

A timed language is a set (possibly infinite) of timed sequences. Let A be a TA, and LA be the set of
sequences which can be executed by A. Then we say that A accepts the language LA.
Definition 4.4. (Projection, total and partial provision of a desired service with temporal requirements)
The projection of a TA into a subalphabet Λ can be intuitively defined similarly to the projection of an
FSA (see Def. 3.3). Therefore, ProjVs(DST) specifies the service provided to the user by DS, and each
ProjVi(DST) specifies PEi, for i=1,..., n.

For the comparison of timed languages, we use the symbols ≅Τ and <Τ, i.e., A≅ΤB means that LA=LB,
and A<ΤB means that LA⊂LB. Total and partial provisions of a real-time service are defined like in Def.

3.3, but by using symbols ≅Τ and <Τ instead of ≅ and <.

5. Protocol Synthesis for Real-Time Applications
Definition 5.1. (Reliable medium)
A temporal model of the medium is necessary to compute temporal requirements for the PEs. Besides not

 altering messages, in the real-time case a reliable communication medium must be such that the transit
delay tm of a message sent at Sitea and received at Siteb, belongs to a finite interval Ma,b=[µa,b;ρa,b]
which depends on Sitea and Siteb.

The synthesis of the real-time PEs uses the same Step 1 of the non-real-time case, where we obtain
GPST from SST (the last T indicates the presence of temporal constraints). In this step, the timed
transitions are processed like simple transitions, while C and v are kept unchanged. GPST specifies the
correct ordering of primitives, but it does not specify the correct temporal requirements of the service. In
a subsequent step (see Sect. 5.4), we will use GPST and the model of the medium in order to compute
temporal constraints of the PEs which guarantee the temporal requirements of the service.

5.1. Approach for the Problem of Computing Timing Requirements (PCTR)
To compute temporal constraints for the PEs, we consider every pair of states q and r of GPST which are
connected by two consecutive events sa

b(p) and rb
a(p) (see Fig. 7). Let Tr be the single incoming transition

of q (which corresponds to a primitive executed at a Sitea) and let Tr1,...,Trn be the outgoing transitions
of r (which correspond to primitives executed at the same Siteb). After Tr, PEa sends a message to PEb
(written sa

b(p)); when PEb receives the message (written rb
a(p)), it executes one of the n Trk. The

sequencing of events between Tr=[q1,σ,q;C,v] and Trk=[r,σk,q2;Ck,vk] is represented as a function of the

time in Fig. 8.a. The delay between Tr and Trk must belong to the vth interval Ikv=[γkv;δkv] of C which,

for simplicity, is denoted Ik=[γk;δk].
Tr q s (p)b

a r (p)a
b r

Tr1

Trn

Fig. 7. Outgoing transitions on a state of GPST.

s (p)b
a r (p)a

b

time axis tk

ts tm trk

Trk Tr

PEa

Medium

s (p)b
a r (p)a

b

PEb

Tr Trk

 8.a. Representation in function of time 8.b. Representation by entities
Fig. 8. Representation of events between Tr and Trk

From Fig. 8.a, we see that the service requires that the time tk, between the executions of Tr and Trk, falls
within Ik=[γk;δk]. The model of the medium implies that the transit delay tm of a message sent by PEa

and received by PEb, falls within Ma,b=[µa,b;ρa,b].
The aim of the temporal requirements derivation for the protocol entities is the following.

From requirements tm∈Ma,b=[µa,b;ρa,b] and tk∈Ik=[γk;δk] (k=1, 2,..., n), we must compute constraints
on ts and trk (k=1,2, ..., n) which ensure that requirements tk∈Ik on the service will be respected.
These derived constraints are written in the form ts ∈ S = [θ;φ], and trk

∈ Rk=[τk; ωk], k= 1, 2,..., n. This
computation must be made for each occurrence of the structure in Fig. 7 within GPST.

Notations: operators ⊆, ∪ or ∩ will be used on intervals, and [a;b]+[c;d]=[a+c;b+d], [a;b]-[c;d]=[a-c;b-d].
For the lack of space, correctness of the solutions given in the remaining of Sect. 5 is not proved here.

5.2. Conditions for the existence of solutions
We consider two consecutive transitions Tr1 and Tr2 wich are executed at Sitei and Sitej, respectively.
After Tr1, Sitei sends a message to Sitej to inform it that it may execute Tr2. If the delay between Tr1 and
Tr2 must be greater than x and smaller than y, then the transit delay of the message must be smaller than
y. Besides, the difference between the biggest delay and the smallest delay of the message in the medium
must be smaller than y-x. Formally, for each occurrence of the structure in Fig. 7 within the GPST,
wemust have : : for k= 1, 2, ..., n : δk - ρa,b ≥ sup(γk- µa,b; 0) (1)

where sup(a; b) is equal to the biggest of a and b.
Therefore, for each occurrence within GPST of the structure in Fig. 7, we must check if (1) is respected.
If the checking is positive then we must compute : (a) the interval S representing the constraint on ts,

and (b) intervals Rk, k=1, 2,..., n , representing the constraints on trk, k=1, 2,..., n.
We note that condition (1) is less restrictive than the conditions for the existence of solutions of [13].

5.3. Resolution
For resolving the timing constraints of the PEs, we consider the following three cases :
Static case : the messages transmitted by PEs contain no temporal information;
First dynamic case : the PEs include some temporal information in the messages they send;
Second dynamic case : the temporal information included by the PEs is completed by the medium.

In the following, ξ and ψ are any real values which fall within the interval [0; 1].

5.3.1. Static case
We assume that the intervals S and Rk (see Sect. 5.1) are constant. When PEa executes a transition Tr and
decides to send a message to PEb, the time ts between Tr and the transmission of the message falls within
a constant interval S. When PEb receives the message from PEa, it can execute a transition Trk, among n
possible transitions (k=1, 2, ..., n), in a time trk belonging to a constant interval Rk.

The interval S = [θ;φ] must satisfy the following equations :

 φ = ψ*mink=1 to n (δk -ρa,b) (2)

 θ = sup(U, 0) + (φ - sup(U, 0))*ξ (3)

 with U = maxk=1 to n (φ + (ρa,b - µa,b) - (δk -γk)) (4)

Afterwards, we choose the less restrictive solutions for Rk=[τk; ωk] :

 for k= 1, 2, ..., n : ωk = δk - ρa,b - φ (5)

 τk = sup(γk- µa,b- θ; 0) (6)

Let us see intuitively how the values of ψ and ξ may influence the synthesized system. Taking ψ as small

as possible and ξ as large as possible, implies to have φ and θ as small and as close as possible. In this

case, ω k and τk will be the less constrained possible. Therefore, the sender entity will be more
constrained and the receiving entity will have as much time as possible to provide the service. Generally,
modifying ψ and ξ allows to "move" some timing constraints between two communicating entities.

5.3.2. First dynamic case
We assume that PEa sends to PEb a message containing ts (Fig. 8.a), and PEb calculates dynamically Rk
as a function of ts when it receives the message from PEa.

The interval S = [θ;φ] must satisfy the following equations :

 φ= ψ*mink=1 to n (δk- ρa,b) (2)

 θ = φ*ξ (7)

 The interval Rk(ts) is computed as follows. If ts, which belongs to [θ; φ], is the delay when the
message is sent after the execution of Trp, the receiving entity knows it and can choose :

 for k= 1, 2, ..., n : ωk(ts) = δk - ρa,b - ts (8)

 τk(ts) = sup(γk - µa,b - ts; 0) (9)

Intuitively, with the information ts, the receiving entity PEb can use the time allocated to it to provide the
service more efficiently than in the static case. Let us, for instance, assume that some optional tasks are
achieved by PEb, in order to provide a better quality of service, only if PEb has enough time. In the static
case, PEb may estimate that it has not enough time to execute its optional tasks, while in the dynamic
case optional tasks will be executed. In other terms, sometimes in the static case PEb has to "hurry up"
when in the dynamic case it does not have to.

5.3.3. Second dynamic case
Compared to the first dynamic case, we assume in this case that the medium modifies ts into the more
accurate information ts+tm. In this case, PEb receives the message with information ts+tm, and it
calculates dynamically the interval Rk, as a function of ts+tm.

S = [θ;φ] is resolved as in Sect. 5.3.2; ωk and τk are calculated dynamically by PEb as follows :

 for k= 1, 2, ..., n : ωk(ts+tm) = δk - (ts+tm) (10)

 τk(ts+tm) = sup(γk - (ts+tm); 0) (11)

Intuitively, with the information ts+tm the receiving entity PEb knows that Tr has been executed ts+tm
before the reception of the message, which is a more accurate information than in the first dynamic case.
Due to this fact, in the second dynamic case PEb can use the time allocated to it to provide the service
more efficiently than in the first dynamic case.

We note that ts and ts+tm , which are transmitted in the dynamic cases, are a relative temporal
information. This is an advantage since it implies that a global clock is not necessary.

We also note that the temporal requirements of the protocol obtained using the approach in [13] are
more restrictive than those derived by our improved approach.

5.4. Derivation Procedure
The derivation procedure consists of three steps. Step 1, which generates a specification GPST, is similar
to step 1 of the non-real-time case.
Step 2: The aim of this step is : (a) to compute and insert into GPST the static temporal constraints and,
in the dynamic cases, some constant parameters which allow to compute the dynamic temporal
constraints; (b) to insert ts and tm into the exchanged messages. The TA obtained is denoted GST.
Therefore, for every structure represented in Fig. 7 and contained in GPST, the following three substeps
are performed to transform GPST into GST.

Step 2.1. We compute the interval S=[θ ; φ] and:
* Intervals Rk, k=1,...,n, in the static case (Sect. 5.4.1);
* Intervals Xk=Ik-Ma,b, k=1,...,n, in the first dynamic case;

Step 2.2 r (p)a
bs (p)b

a becomes: (v being the value of vvvv which is set by the transition preceding sa
b(p))

 - In the static case : ba(s (p);S,v) a
b(r (p);Ma,b,v)

 - In the first dynamic case : ba(s (p,ts);S,v) a
b(r (p,ts);Ma,b,v)

 - In the second dynamic case : a
b(r (p,ts+tm);Ma,b,v)b

a(s (p,ts+tm);S,v)

Informally: - the delay between occurrences of Tr and sa
b(*) falls within S=[θ;φ];

 - the delay between occurrences of sa
b(*) and rb

a(*) falls within Ma,b.

Step 2.3 For each k=1, ...,n, the vth interval Ik of Ck is replaced by the interval: (i) Rk in the static case;
(ii) Xk=Ik-Ma,b in the first dynamic case; (iii) Ik (i.e., it is not replaced) in the second dynamic case.
We note that the TA obtained at Step 2.3, which we call GST, is defined by constant intervals. In
dynamic cases, some of these constant intervals do not directly represent timing constraints, but they
are used for a dynamic calculation of the time requirements. In fact, for each k=1,...,n, the delay
between occurrences of rb

a(p) and Trk must belong to: - the constant interval Rk in the static case;
 - a variable interval Rk(ts) which depends on the constant interval Xk=Ik-Ma,b and on ts ;
 - a variable interval Rk(ts+tm) which depends on the constant interval Ik and on ts+tm.
Step 3 : This step consists of generating the protocol specification PSTi by projecting GST onto the

alphabet of events which occur at Sitei, i=1,...,n. This step is similar to the second step of the non-real-
time case, with the difference that intervals Ma,b are replaced by [0;∞]. Informally, timing constraints
for the receptions of events do not need to be explicitly specified, since they are implicitly specified by
the model of the communication medium. Replacing Ma,b by [0;∞] is mandatory, because Ma,b is a
timing constraint between two consecutive events sa

b(*) and rb
a(*) of GST which, after the projections,

will be in two different timed automata PSTa and PSTb.
For the lack of space, syntactic and semantic correctness of the protocol synthesized in not presented.
Remarks. About the passage from the non real-time case to a real-time case:
 (a) The passage to the static case necessitates that the protocol entities and the medium must satisfy the

required temporal constraints;

 (b) The passage to the first dynamic necessitates, besides the requirement in (a), a modification of the
protocol which must add some temporal information in its messages (ts).

 (c) The passage to the second dynamic case necessitates, besides the requirements in (a) and (b), a
modification of the medium which must modify the temporal information ts into ts+tm.

These remarks illustrate the price to pay for each of the three alternatives.

6. Examples
We have developed a tool called PROSYN which implements our synthesis method. The application of
this tool is illustrated in the following three examples, where ψ and ξ (Sect. 5.1, 5.2) are taken to be
equal to 0.5, which means that the temporal constraints are equally distributed between the two sites.

6.1. A Pedagogical Example
We consider the SST with four states and six transitions presented in Sect.4.2. Let us for instance take :
• I1=[3;6], I21=[5;10], I22=[4;8], I23=[4;10], I3=[3;8], I4=[4;9], I51=[1;3], I52=[4;8], I53=[3;8], I6=[4;10].
• Ma,b=[2;4] for all pairs of sites (Def. 5.1).

If we apply the derivation procedure, we obtain the PSTis in each site. In the static case, the derived
PSTis are represented in Fig. 9, with D1=R1, D2=(R21,R22,R23), D3=R3, D4=R4, D5=(R51,R52,R53),
D6=R6. Using formulae (2-6), we calculate :
 In PST1 : S1=[1.5;3], S5=[1.5;3], R1=[0.5;1], R51=[1;3], R52=[1;2], R53=[0 ;2],
 In PST2 : S31=[1;2], S32=[1;2], R3=[0;2],
 In PST3 : S21=[1;2], S22=[1.25;2.5], R21=[1.5;3], R22=[1;2], R23=[0.5;3],
 In PST4 : S4=[0.5;1], S61=[1.5;2], S62=[1;2], R4=[0.75;2.5], R6=[0.5;3] .
In the first dynamic case, we must :
- replace every sa

b(p) and rb
a(p) respectively by sa

b(p,ts) and rb
a(p,ts);

- compute every Sij by formulae (2,7);
- compute the constant intervals Xi which are used to compute dynamically Ri(ts) with formulae (8,9);
 - replace intervals Ri by intervals Xi in the specifications of Figure 9.

In the second dynamic case, we must :
- replace every sa

b(p) and rb
a(p) respectively by sa

b(p,ts) and rb
a(p,ts+tm);

- compute every Sij by formulae (2,7);
- replace intervals Ri by intervals Ii in the specifications of Figure 9.

9.a. PST1 9.b. PST2

9.c. PST3 9.d. PST4

[r (3);[0;∞],2]2
1

4
1[r (4);[0;∞],1]

[A1;D1,1]

4
1[s (5);S5,1]

3
1[s (1);S1,1]

4
1[r (4);[0;∞],1]

[B1;D5,1]

1

[B1;D5,1][r (3);[0;∞],2]2
1 [r (6);[0;∞],3]4

1

2

15
10

 3-9
17-21

 4,5,21
 11-14
 16-19

[r (2);[0;∞],1]32

[C2;D3,2]

[s (3);S31,2]3
2

[s (3);S32,2]1
2

18

 1-17
 20,21

19

[s (2);S21,1]2
3

[r (6);[0;∞],3]43

[B3;D2,1]

[s (2);S22,1]4
3[r (3);[0;∞],2]2

3

[r (1);[0;∞],1]13

[r (6);[0;∞],3]4
3

 1-3
 6-9

4

5

 10-21

[s (4);S4,1]1
4

[C4;D6,3]
[r (2);[0;∞],1]3

4

[B4;D4,1]

[s (6);S62,3]1
4[s (6);S61,3]3

4

[r (5);[0;∞],1]1
4[r (5);[0;∞],1]1

4

[r (5);[0;∞],1]1
4

[r (2);[0;∞],1]3
48

7 12

13
10,11,
14,15

 4,6.10,11,
 15-21

 1-6
 9-11

Fig. 9. First example of protocol specifications with timing requirements

6.2. Synthesis of a Simplified X.25 Protocol with Temporal Requirements
X.25 [6] is a communication protocol consisting of the lowest three levels of the OSI reference model.
Services are offered to the user through the network layer. Globally, the X.25 protocol allows two sites
Sitei and Sitej of the network to communicate. After the two sites have established a connection, they can
exchange data. The communication between them is stopped when one of the two sites initiates a
disconnection. A site can send a message at any moment without waiting for an acknowledgement. Two
kinds of data are supported: normal and express data. Each of the two kinds of data are transmitted

according to a FIFO discipline. But the FIFO discipline is not respected between the two kinds of data
since express data may be received before normal data which were sent before.

In order to apply our synthesis method, the X.25 service is made sequential by assuming that the
service primitives are ordered and executed sequentially. For that purpose, the following assumptions are
made: (i) a new message cannot be sent before the last one is received; and (ii) express data are not
supported. The simplified X.25 service obtained will be extended by adding certain temporal
requirements between consecutive primitives.

In order to give the possibility to both sites to establish a connection, we have used a mechanism of
tokens to realize a distributed choice. The following description of this example is based on [9].

6.2.1. Primitives of the Simplified X.25 Service
Let U1 and U2 be two users of the network who are located in Site1 and Site2, respectively. The
following service primitives are defined :
 • Connection : A connection may be established between U1 and U2 if one of them, for instance U1,

sends a Connect request (CN.req) to U2. When the latter receives a Connect indication (CN.ind), he
may answer either by a Disconnect request (DC.req) to reject the connection request, or by a Connect
response (CN.rsp). In the first case, U1 receives a Disconnect indication (DC.ind), while in the second
case U1 receives a Connect confirm (CN.cnf).

 • Disconnection : A disconnection primitive can be used either to reject a Connect request (see above)
or to terminate an existing connection. For instance, U1 may send a Disconnect request (DC.req) and
then U2 will receive a Disconnect indication (DC.ind).

 • Data Transfer : This primitive allows to transfer data in both directions between two sites linked by a
connection. To simplify the example, we assume that only the party which has initiated the connection
can send data. The sending of a message is generated by a Data request (DT.req) and its reception by a
Data indication (DT.ind)

 • Reinitialization : The Reinitialization procedure allows to restore the synchronization between two
parties. When a Reinitialization request (RI.rqt) is generated, for instance by U1, then all the data
being transmitted in the medium is removed. The next element to be received by U2 is a
Reinitialization indication (RI.ind). U2 answers by a Reinitialization response (RI.rsp) and then U1
will receive a Reinitialization confirm (RI.cnf). We assume that the party which requests the
reinitialization is the sender of data.

6.2.2. Specification of the Simplified X.25 Service
Our specification contains principally two blocs S1,2 and S2,1, where Si,j (see Fig. 10) models the service
when Sitei and Sitej are the sender and the receiver, respectively. The specification of the simplified
X.25, which contains the two blocks, is schematized in Fig. 11. The event Tokeni

j means that "Sitei gives
to Sitej the possibility to establish a connection". The other events have been defined in Sect. 6.2.1. State
1i,j is the initial state of Block Si,j; in this state, Sitei has the possibility to request a connection but may
also give this possibility to Sitej (by the transition Tokeni

j). State 6i,j is the state where the connection has
been established by Sitei which is therefore ready to send data. We assume that State 11,2 is the initial
state of the service to be provided (Fig. 11).

6.2.3. Temporal constraints added to the simplified X.25 service
 - The delay between CN.reqi and CN.indj belongs to the interval [1;1.5];
 - The delay between DC.reqi and DC.indj belongs to the interval [0.5;1];
 - The delay between RI.indi and RI.rspi belongs to the interval [0;0.5];
 - The delay between DT.reqi and DT.indj belongs to the interval [1;1.5];
 - The delay between DT.rspi and DT.cnfj belongs to the interval [1;1.25].
Transitions with temporal constraints are represented in grey in Fig. 10 and 11. Intervals defining the
temporal constraints are also represented on these transitions.

CN.reqi

CN.indj

CN.rspj
CN.cnfi

DC.indi

DC.reqi

DC.indj

DT.reqi

DT.indj

DT.rspj
DT.cnfi

DC.reqj

DC.reqi

1 ji

1 ij

2 ij

7ij

4ij

6 ij

5ij

10 ij

8ij

9ij

3ij

DC.reqj
DC.reqj

DC.reqj

RI.reqj

RI.indi RI.rspi

RI.cnfj

8ij , 9 ij

14 ij

15 ij

6 ji

16 ij

RI.reqi

RI.indj RI.rspj

RI.cnfi

6ij , 10 ij

11 ij

12 ij

13 ij

6ij

[1;1.5] [1;1.25]

[0.5;1]

[1;1.5]

[0.5;1]

[1;1.25] [1;1.25]

i
j

Token j
iToken

Fig. 10. Block Si,j

 (Other states and
 transitions are
represented in Fig. 14)

 (Other states and
 transitions are
represented in Fig. 14)

112 121

712 721

621612

1612 16 21

S21S12

DC.ind2
DC.ind1

RI.cnf2 RI.cnf1

[0.5;1] [0.5;1]

2
1Token

1
2

Token

Fig. 11. Service specification of the simplified X.25

6.2.4. Protocol Synthesis
Our synthesis tool PROSYN has been applied to the service represented in Fig. 10 and 11, in the static
case and the two dynamic cases. Due to the symmetry of the service, the synthesized specifications of the
two protocol entities are quite similar and can be represented by only one parameterized TA which is
represented in Fig. 12, and where i identifies the PE represented and j identifies the other PE. Messages
sent by each PEi contain the parameters pi

k , k=1,..., 17, with p pi
r

i
s≠ if r ≠ s. The initial states of PE1

and PE2 are identified by 1 and 2, respectively. Like in the service specification, the transitions with
temporal constraints are represented in grey in Fig. 12. To generate these real-time PEs, the following
temporal model of the medium has been used: the transit delay of a message falls within [0.5;0.75] when
it is transmitted from Site1 to Site2, and within [0.25;0.5] when it is transmitted from Site2 to Site1. For
simplicity, we give only the results of the static case. The synthesized temporal constraints, which are
defined by an interval for the transitions represented in grey in Fig. 12, are the following.

In Site1 : the constraint for s p1
2

12() , s p1
2

13(), s p1
2

14(), s p1
2

15(), s p1
2

110() and s p1
2

111() is [0.0625; 0.125];
the constraint for s p1

2
17() is [0.25; 0.25]; the constraint for s p1

2
18() and s p1

2
19() is [0.25; 0.375];

the constraint for DT.cnf1 is [0.375; 0.375]; the constraint for DT.ind1 is [0.375; 0.5];
the constraint for DC.ind1 is [0.125; 0.25]; the constraint for RI.rsp1 is [0; 0.5].

In Site2 : the constraint for s p2
1

22(), s p2
1

23() , s p2
1

24(), s p2
1

25(), s p2
1

210() and s p2
1

211() is [0.125; 0.25]
the constraint for s p2

1
27() is [0.375; 0.375]; the constraint for s p2

1
28() and s p2

1
29() is [0.375; 0.5];

the constraint for DT.cnf2 is [0.25; 0.25] ; the constraint for DT.ind2 and CN.ind2 is [0.25; 0.375] ;
the constraint for DC.ind2 is [0; 0.125]; the constraint for RI.rsp2 is [0; 0.5].

1

s (p1i)i
j

Tokeniji

2

r (p2j)i
j

r (p1j)i
j

r (p8j)i
j

CN.indi

CN.rspi

DC.reqi

DC.reqi

s (p3i)i
j

s (p2i)i
j

3

s (p6i)i
j

5
s (p7i)i

j

r (p9j)i
j

6
DT.indi

DT.rspi

DC.reqi

DC.reqi

s (p4i)i
j

s (p5i)i
j

4

s (p10i)i
j

r (p12j)i
j

r (p13j)i
j

r (p110j)i
j

r (p11j)i
j

DC.indi

CN.reqi s (p8i)i
j r (p6j)i

j

r (p4j)i
jr (p5j)i

j

r (p3j)i
j

8

CN.cnfi

DC.indi

7
r (p15j)i

j

r (p14j)i
j

9

r (p7j)i
j

DT.cnfi

DT.reqi

s (p9i)i
j

DC.reqi

s (p11i)i
j

9

8

RI.reqi

RI.reqi

s (p12i)i
j

s (p13i)i
j

RI.cnfi

r (p17j)i
j

6
RI.reqi

RI.reqi

s (p14i)i
j

5 s (p15i)i
j

r (p16j)i
j

RI.cnfi
8

RI.rspi

RI.rspi

7
RI.indi

RI.indi
4

3

i
s (p16i)j

s (p17i)i
j

DC.reqi

Fig. 12. Specification of the synthesized X.25 protocol at Sitei

6.3. Controlling Several Robots to Assemble Pieces
The following example is interesting in the sense that it illustrates the application of our synthesis
method in another area than telecommunications. We consider an assembly system consisting of three
robots R1, R2 and R3 and three carpets C1, C2 and C3. The carpets C1 and C2 bring pieces of type P1
and P2, respectively, and carpet C3 takes away the assembled pieces. Robot R1 takes a piece P1, and
puts it on a table T for the assembly. Robot R2 takes a piece P2 and assembles it with the piece P1 which
is on the table T. Robot R3 removes the defective pieces. The details of this example are given in [15].

6.3.1. Protocol entities
There are six PEs which correspond to the three robots and the three carpets. They are identified by R1,
R2, R3, C1, C2 and C3, respectively. We consider that each carpet consists of the carpet itself, of an
actuator which moves and stops the carpet, and of a sensor which indicates whether a piece carried by the
carpet has reached its destination. Table T is not considered as an entity since it is passive.

6.3.2. Primitives of the service
The service primitives are the following (with i=1, 2, 3, and j=1, 2) :

- MOVE.CarpetCi : Carpet Ci is actuated (it begins to move),
- ARRIVED.PieceCi : Carpet Ci has detected that a piece Pi has reached its destination,
- STOP.CarpetCi : Carpet Ci is stopped,
- CHECK.PieceRj : Robot Rj begins to check a piece Pj,
- TAKE.PieceRj : Robot Rj takes a piece Pj from carpet Cj,
- TAKE.Piece1R3 : Robot R3 takes a piece P1 from carpet C1,
- TAKE.Piece2R3 : Robot R3 takes a piece P2 from carpet C2,
- TAKE.AssPiecesR3 : Robot R3 takes an assembled piece from table T,
- PUT.PieceR1 : Robot R1 puts a piece P1 on table T,
- PUT.AssPiecesR2 : Robot R2 puts an assembled piece on carpet C3,
- ASS.PiecesR2 : Robot R2 assembles pieces P1 and P2.

6.3.3. Scenario of the Service
From the initial state where the whole system is stopped, the scenario of the service is the following:

Step 1 : Carpet C1 is actuated (primitive MOVE.CarpetC1)
Step 2 : Piece P1, which is on C1, reaches its destination, which is detected by C1 (ARRIVED.PieceC1)
Step 3 : Carpet C1 is stopped (STOP.CarpetC1)
Step 4 : Robot R1 checks P1 (CHECK.PieceR1):
Step 5: If P1 is bad then R3 takes it off (TAKE.Piece1R3), and goto Step 1.
Step 6: If P1 is good then R1 takes it from C1 (TAKE.PieceR1) and

Step 7: R1 puts C1 on the table T (PUT.PieceR1)
Step 8 : Carpet C2 is actuated (MOVE.CarpetC2)
Step 9 : Piece P2, which is on C2, reaches its destination, which is detected by C2 (ARRIVED.PieceC2)
Step 10 : Carpet C2 is stopped (STOP.CarpetC2)
Step 11 : Robot R2 checks P2 (CHECK.PieceR2):
Step 12 : If P2 is bad then R3 takes it off (TAKE.Piece2R3), and goto Step 8.
Step 13 : If P2 is good then R2 takes it from C2 (TAKE.PieceR2) and

Step 14 : R2 assembles P2 with P1 on the table T (ASS.PiecesR2).
Step 15 : If the assembly is bad, which it is detected by R2, then R3 takes it off (TAKE.AssPiecesR3),

and goto Step 1.
Step 16 : If the assembly is good then R2 takes it and puts it on carpet C3 (PUT.AssPiecesR2)
Step 17 : Carpet C3 is actuated (MOVE.CarpetC3)
Step 18 : The assembled pieces reach their destination, which is detected by carpet C3

(ARRIVED.PieceC3).
Step 19 : Carpet C3 is stopped (STOP.CarpetC3), and goto Step 1.

6.3.4. Temporal constraints added to the service
- The delay between MOVE.CarpetCi and ARRIVED.PieceCi belongs to [10;20]; (i=1,2,3)
- The delay between ARRIVED.PieceCi and STOP.CarpetCi belongs to [0.5;2]; (i=1,2,3)
- The delay between STOP.CarpetCi and CHECK.PieceRi belongs to [5;8]; (i=1,2)
- The delay between CHECK.PieceRi and TAKE.PieceiR3 belongs to [5;8]; (i=1,2)
- The delay between ASS.PieceR2 and TAKE.AssPieces3 belongs to [5;8];
- The delay between CHECK.PieceRi and TAKE.PieceRi belongs to [1;2]; (i=1,2)
- The delay between TAKE.PieceR1 and PUT.PieceR1 belongs to [1;2];
- The delay between TAKE.PieceR2 and ASS.PiecesR2 belongs to [4;10];
- The delay between PUT.PieceR1 (or TAKE.Piece2R3) and MOVE.CarpetC2 belongs to [5;10];
- The delay between PUT.AssPiecesR2 and MOVE.CarpetC3 belongs to [5;10];
- The delay between ASS.PiecesR2 and PUT.AssPiecesR2 belongs to [2;5];
- The delay between TAKE.Piece1R3 (or TAKE.AssPiecesR3 or STOP.CarpetC3) and MOVE.CarpetC1

belongs to [6;10]; (i=1,2)
The specification of this service is represented in Fig. 13, where transition Tri corresponds to Step i of the
scenario (Sect. 6.3.3). As in the previous example, the temporal constraint of each transition is defined by
a single interval (which is shown in Fig. 13).

1
Tr1

Tr2

Tr3Tr4Tr6Tr7Tr8
Tr9

Tr10

Tr11 Tr13 Tr14 Tr15

Tr19
Tr18Tr17

Tr12

Tr5

Tr16

[6;10]

[10;20]

[0.5;2][5;8][1;2][1;2][5;10]

[10;20]

[0.5;2]

[5;8] [1;2] [4;10] [5;8]

[5;8]

[10;20]

[0.5;2]

[5;10]

[2;5]

Fig. 13. Service specification of the assembling system

6.3.5. Protocol Synthesis
Our synthesis tool PROSYN has been applied to the service specification represented in Fig. 13 for the
static and the two dynamic cases. The specifications synthesized in the static case are represented in Fig.
18, and consist of six TAs modeling the behaviour of the three robots and the three carpets, respectively.
To generate these real-time PEs, the transit delay of all messages has been assumed to belong to [2;5].

CHECK.PieceR1

TAKE.PieceR1

PUT.PieceR1

s (17)R1
R3

s (14)R1
C2

r (18)R1
C1

[1.5;2.5]

[2;5]

[1;2]
[1.5;1.5]

[1.5;1.5]
s (10)R2
R3

s (5)R2
C3

s (7)R2
R3

r (11)R2
C2 CHECK.PieceR2

ASS.PiecesR2PUT.AssPiecesR2

TAKE.PieceR2

[1.5;1.5]

[1.5;1.5]
[1;2]

[4;10][2;5]

[1.5;1.5]

[1.5;2.5] r (17)R3
R1 s (16)R3

C1

s (9)R3
C2

s (6)R3
C1

r (17)R3
R2

r (10)R3
R2

TAKE.Piece1R3

TAKE.Piece2R3
TAKE.AssPiecesR3

[1.5;1.5]

[2;2.5]

[1.5;1.5]

[1.5;1.5]

[2;2.5]

[1.5;2.5]

14.a. Robot R1 14.b. Robot R2 14.c Robot R3

r (14)C2
R1

s (11)C2
R2

r (14)C2
R1

r (9)C2
R3

MOVE.CarpetC2 ARRIVED.PieceC2

STOP.CarpetC2

[1.5;2.5] [10;20]
[0.5;2]

[1.5;1.5]
r (6)C1
R3 s (18)C1

R1r (16)C1
R3

r (2)C1
C3

MOVE.CarpetC1 ARRIVED.PieceC1

STOP.CarpetC1
[0.5;2]

[10;20][2;2.5]

[1.5;1.5]

r (5)C3
R2

s (2)C3
C1

MOVE.CarpetC3 ARRIVED.PieceC3

STOP.CarpetC3

[1.5;2.5] [10;20]
[0.5;2]

[2;2.5]

14.d. Carpet C1 14.e. Carpet C2 14.f. Carpet C3
Fig. 14. Synthesized specifications of the robots and the carpets in the static case

6.4. Conclusion about the two concrete examples
Our synthesis method can be applied, not only for the design of communication protocols, but also in
other areas such as robotics. Our method can be applied to realistic applications, provided that the latter
are made sequential. The modifications which make a system sequential must be reasonable, in the sense
that the service provided by the simplified system must be useful.

7. Conclusion
A method for deriving real-time protocols, which has been proposed in [13], is improved and extended in
the present paper. In comparison with [13], the main advantages of the present approach are : (1) the
number of exchanged messages is minimized; (2) the choice between several primitives can be made
either by the user or by the system; (3) the conditions for the existence of a solution and the derived
temporal constraints are weaker; (4) two simple but realistic applications of our method are proposed.

As in [13], the timing requirements of the synthesized protocols can be calculated statically or
dynamically. The dynamic case is interesting because the receiving protocol entities use more efficiently
the time allocated to them to provide the service.

Our method imposes two restrictions: (r1) the service specification is not concurrent; and (r2)
timing requirements are only between consecutive primitives. Several methods of protocol synthesis for
parallel systems, i.e., without restriction (r1), have been developed (e.g. [10]), but most of them do not
consider timing requirements. A simplified version of the method in [10] has been extended to deal with
timing constraints [11,12], but with restrictions.

We are presently investigating an approach using the following three steps :
Step (a) : the given service specification S is transformed into a sequential service, called Sseq.
Step (b). A protocol Pseq providing the sequential service Sseq is synthesized by using our method; the

obtained protocol is a kind of "skeleton" of a protocol P providing S.
Step (c). Pseq is transformed in order to obtain a protocol P which provides S.

We note that Step (b) is realized automatically by the method presented in the present paper, and that
Step (a) has been applied manually in the examples of Sect. 6.2 and 6.3 to make our method applicable.
We therefore try to find a systematic way to achieve steps (a) and (c).

REFERENCES
[1] R. ALur and D.Dill, "Automata for Modeling Real-Time Systems," in Proceedings of the 17th Intern.

Coll. on Automata, Languages and Programming, Lecture Notes in Comp. Sci. 443, Ed. Springer-
Verlag, Warwick, UK, 1990.

[2] B. Bertomieu and M.Diaz, "Modeling and verification of time dependant systems using Petri nets,"
IEEE Transactions of Software Engineering, Vol.17, N° 3, pp. 259-273, March 1991.

[3] B. Brandin and W.M. Wonham, "The supervisory Control of Timed Discrete-Event Systems," in
Proceedings of the 31rst Conf. on Decision and Control, Tucson, Arizona, Dec.92.

[4] P.Y.M. Chu and M.T.Liu, "Synthesizing Protocol specifications from service specifications in FSM
model," in Proceedings of the IEEE Computer Networking Symposium, pp. 173-182, April 1988.

[5] J-P. Courtiat, M. S. de Camargo, D-E. Saidouni, "RT-LOTOS: LOTOS temporisé pour la
spécification de systèmes temps réel," in Proceedings of Colloque Francophone pour l'ingénierie des
protocoles (CFIP), Montreal, September 1993.

[6] R.J. Deasington, "Protocoles X.25 pour les réseaux à commutation de paquets," Masson, 1987.
[7] R. Gotzhein and G. v. Bochmann, "Deriving Protocol Specifications from Service Specifications

Including parameters," ACM Transactions on Computer Systems, Vol. 8, N° 4, pp. 255-283, 1990.
[8] T. Higashino, K. Okano, H. Imajo and K. Taniguchi, "Deriving protocol specifications from service

specifications in Extended FSM models," in Proceedings of the 13th Intern. Conf. on Distributed
Computing Systems, pp. 141-148, 1993.

[9] Y. Iraqi, "Synthèse du protocole X.25 simplifié avec contraintes de temps. Utilisation de l'outil de
Khoumsi," Report of a project realized at the University of Montreal, April, 1996.

[10] C. Kant, T. Higashino and G.v. Bochmann, "Deriving Protocol Specifications from Service
Specifications Written in LOTOS," Distributed Computing, Vol. 10, N° 1, pp. 29-47, 1996.

[11] M. Kapus Kolar, "Deriving protocol specifications from service specifications with heterogeneous
timing requirements." in Proceedings of the IEEE Int. Conf. on Software Engineering for real time
systems, United-Kingdom, 1991.

[12] M. Kapus Kolar and J. Rugelj, "Deriving protocol specifications from service specifications with
simple relative timing requirements," in Proceedings of ISMM Int. Workshop on parallel computing,
Italy, 1991.

[13] A. Khoumsi, G.v. Bochmann, and R. Dssouli, ''Dérivation de spécifications de protocole à partir de
spécifications de service avec des contraintes temps-réel," Revue Réseaux et informatique répartie
(RIR), Vol.4, N° 1, April 1994.

[14] G. Leduc and L. Léonard, "A Timed LOTOS supporting a dense time domain and including new
timed operators," in Proceedings of the Int. Conf. FORTE, Perros-Guirec, France, Oct. 1992, Ed.
North-Holland, Amsterdam, 1993.

[15] E. Madja, "Dérivation de protocoles pour applications temps réeel. Application au système
d'assemblage," Report of a project realized at the University of Montreal, April, 1996.

[16] P. Merlin and D.J. Faber, "Recoverability of communication protocols," IEEE Transactions on
Communication, Vol. 24, N° 9, September 1976.

[17] J.S. Ostroff, "Deciding Properties of Timed Transitions Models," IEEE Transactions on Parallel
and Distributed Systems, Vol.1, N° 2, pp.170-183, April 1990.

[18] J.S. Ostroff and W.M. Wonham, "A framework for real-time discrete event control," IEEE
Transactions on Automatic Control, Vol.35, N° 4, pp.386-397, April 1990.

[19] K.Saleh and R. Probert, "A service-based method for the synthesis of Communications protocols,"
International Journal of Mini and Microcomputers, Vol. 12, N° 3, pages 97-103, December 1990.

[20] K.Saleh and R. Probert, "An extended service-based method for the synthesis of protocols," in
Proceedings of the Sixth Intern. Symp. on Comp. and Inform. Sciences, pp. 547-557, October 1991.

[21] H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, "Synthesis of protocol entities
specifications from service specifications in a Petri Net model with registers,", in Proceedings of IEEE
Parallel and Distributed Computing Systems, 1995.

